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Abstract. In this article a review is given of analytical and numerical calculations on the electromagnetic properties 
of composite superconducting wires. The review is based on the research performed at the University of Twente 
during the last ten years. Due attention is given to related results in the literature. 

The basic elements of the description are the Maxwell equations supplemented with a set of constitutive 
equations, relating the electric field E and the current density j in the composite. The problem is non-linear due to 
the non-linear E- j  relation describing the superconducting filaments. 

The basic analytical and numerical tools for analyzing engineering problems are presented. Furthermore a 
synopsis is given of characteristic types of numerical results. Some comparisons between analytical and numerical 
results are also given. 

Dedication 
The first author suddenly passed away, when this paper was nearly finished. We therefore dedicate this article to the 
memory of Professor Louis van de Klundert, who was one of the world's leading researchers in the industrial 
application of superconductivity. 

1. Introduction 

1.1. Application o f  large current superconductivity 

The practical use of superconductors in large electromagnets has steadily grown since the 
discovery of the so-called 'hard' type II superconductors, like NbTi and NbSn3, in the late 
fifties. Already in the early sixties bubble chamber magnets with more than 10m 3 free 
volume were constructed and used continuously for many years. Also other magnet systems 
like 4-6 km rings of accelerator dipoles, TEVATRON at Fermilab and HERA at DESY, 
have been constructed successfully and are operational. Design studies and prototypes 
testing for Accelerator rings of 27 km and 10 T (LHC, CERN) and 80 km at 6 T (SSC, 
Dallas) are underway. The first superconducting tokamak T-7 was constructed in the 
Kurchatov Institute in Moscow and nowadays several much larger systems, TORE SUPRA 
in Cadarache and T-15 in Moscow, are in operation. Still larger tokamak systems, like NET 
and ITER, are now under design and are intended to demonstrate the possibility of energy 
production by controlled fusion in the next decade. 

The application of superconductors in levitated trains both for levitation and propulsion 
with speeds up to 512 km/hr have been demonstrated more than 10 years ago. Still under 
design and construction are large components for energy production and transport systems at 
power frequencies, 50-60 Hz. Here we can mention generators, transformers and transport 
lines. The advantage of using superconductors in quasi DC systems, the large ones 
mentioned above and small ones, e.g. MRI and laboratory magnets, is the reduction of the 
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power consumption by at least 6 orders of magnitude compared to conventional ones. In AC 
systems the large reduction in weight and size and better  controllability seems to be of major  
importance,  although the reduction in power loss is still considerable. 

The average current density in superconducting systems ranges from 50-500 A / m m  2 in 
external fields up to 12T. Field rates in AC systems, and in DC systems under fault 
conditions, may locally be in the range from 10-1000 T / s ,  either parallel or perpendicular to 
the local conductor  direction. Consequently,  larger demands exist on the mechanical stability 
of superconducting systems than in conventional ones. Moreover,  under these conditions 
the superconducting state is often required to be maintained or the transition to the normal 
state (quench) has to be performed in a predictable way, such as not to damage the 

system. 
In this paper  a review will be given of the electrodynamics of superconductors based 

primarily on the research performed at the University of Twente during the last ten years. Of 
course relevant results as reported elsewhere in the literature are taken into account. The 
review is restricted to the analytical and numerical investigation of twisted wires. Three 
topics are of main interest: the current carrying capacity, the dissipation and the elec- 
tromagnetically induced quench. For simplicity all calculations have been performed under 
isothermal conditions. 

1.2. Superconductors ,  wires and cables 

Superconducting wires generally consist of many (102-106 ) filaments of superconducting 
material embedded in a normal conducting matrix: Cu, CuNi or A1. For reasons of loss 
power reduction and electromagnetic stability the wire i s -  after drawing it down to almost 
the desired diameter  - twisted in the last reduction step with a twist length Lp ranging from 
10 to 100 times the wire radius R. 

If r/so is the volume fraction of superconducting material and N i the number  of filaments, 
the filament radius R r is given by 

R s = R ~ S .  (1.2.1) 

Typical values are 0 . 1 -50 /xm for R I, 0.1-0.5 mm for R and 0.1-0.5 for r/so. 
Figure 1.1 gives cross sections of some wires. It may be seen that the filament area may or 

may not include the centre part of the wire. The outer shell of the wire that does not contain 
filaments may be thick or thin. If we assume that the ring shaped filamentary zone extends 
from r I till r2, 0 ~- r I < r 2 ~-~ R, so occupying the fraction rl I = (r~ - r~ ) /R  2 of the total cross 
section, the local fraction of superconductor in the filamentary zone equals 

r t = rtsc/rlr. (1.2.2) 

This value of r /plays an important role in the next section. In many examples in this paper, 
however,  we will assume that the filaments are uniformly distributed over the cross section of 
the wire, unless a specific configuration is mentioned. 

Figure 1.2 shows the cross section of superconducting cables used for accelerator dipoles 
and tokamaks. The contact points between the individual wires, usually called strands, will 
allow for closed current paths and consequently for extra loss power induced by external 
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Fig. 1.1, Cross sections of some multifilamentary superconducting composite wires. The filament area may (a) or 
may not (b) include the centre part of the wire. 
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F i g .  1 ,2 .  Cross section of superconducting cables used for accelerator dipoles and tokamacs: T-type (a), L-type (b). 

field changes. The L-type gives a much more regular distribution of the voids than the 
T-type (see Fig. 1.2). 

The evaluation of the electrodynamic response in a twisted multifilamentary wire can be 
achieved by solving the Maxwell equations supplemented with an appropriate set of 
constitutive equations and boundary conditions. In earlier works also simplified potential 
theory has been used, whereas network approaches still find applications. 

2. The mathematical formulation of the problem 

2 .1 .  T h e  M a x w e l l  e q u a t i o n s  

In general the Maxwell equations read: 

V x ~ = -a ,YJ ,  V x Y(= j  + 0 , 9 ,  (2.1.1) 

where ~ is the electric field, ~ the magnetic field, Y(the magnetic field strength,j the current 
density and @ the electric displacement [1]. Using Carr's continuum model [2] the behaviour 
of composite superconductors will be described in terms of averaged quantities E, B, j and 
the so-called magnetization M. The Maxwell equations in a conducting non-magnetic 
composite and in slowly time varying fields are then given by: 

V × E = - 0 , B ,  (2.1.2) 

V × (B - / % M )  = ;Zoj. (2.1.3) 

Since M results from macroscopic currents (see Section 2.5) in the filaments and varies much 
weaker in space and time than B the term ~0 M can be neglected in (2.1.3). In cylindrical 
coordinates we can write: 

l 1 
- O¢E~ - O z E  ~ = - O r B  r , - O¢B~ - O~B~ = I.~OJr , 
r r 

O z E  r - O r E  z = - O t B , ;  , O zBr  - OrB z = tzoj,p , 

_1 (OrrE~ - O ~ E , )  = - O , B ~ ,  _1 (O , rB~  - O¢Br )  = tZoj ~ , 
r F 

(2.1.4) 
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and, since V- (V × A) = 0 for any vector, it may be beneficial to replace one of the above 
equations by: 

V - B =  -1 (OrrBr+O~B~)+OzBz=O, 
r 

(2.1.5) 

V. j  = _1 (Orrjr -~ Osojw) -}- O~j~ = O. 
r 

2.2. Phenomenology of composite superconductors 

Taking into account that RI/L e ~ 10 -3, i.e. the filaments are almost parallel to each other, it 
is useful to define a local coordinate system for the constitutive equations with one 
coordinate, ell , parallel to the filament direction and two, e~ and e 2, in the plane perpen- 
dicular to ell. Then we have: 

Jll = o-IIEII + Wp( E, B, I~), 

Jl = 0-11E1 + 0-12E2 , (2.2.1) 

J2  = 0 -12E1  + 0 - 2 2 E 2  • 

]p is the superconducting current density and 0-q are elements of the conductivity matrix. The 
coefficient 0-11 is given by %1 = ( 1 -  7)o-0 where 0-o is the bulk conductivity of the matrix 
material. 

For arrangements of filaments with 3-, 4- or &fold rotational symmetry, the coarse grained 
values of the conductivity matrix reduce to 

0-1z = 0 and 0-11 = 0"22 = 0-± • 

Carr [3] states that this isotropic value o-; is given by 

0-i = 0-0(1 + 7)/(1 - n) or 0-; = 0-0(1 - 7) /(1 + 7/), (2.2.2) 

whenever the filament material does or does not contribute to the transverse current 
conduction, respectively. This is mainly determined by the properties of the matrix supercon- 
ductor interface. Usually non-conducting filaments are assumed in Cu matrix, whereas 
perfect conducting material is assumed, when a highly resistive CuNi matrix is used. Kanbara 
[4] and Rem [5] investigated the validity of relation (2.2.2). Recently it was shown [6] that 
for hexagonal filaments in a 6-fold symmetry the maximum deviation of the numerically 
calculated 0-1 from the value given above is about 2% at ~ = 0.5. 

A generally accepted expression for the superconducting current density jp does not exist 
and only simplified expressions, valid in some regimes can be given. The strong non-linear 
behaviour of the superconducting material under DC conditions can be approximated by 
either a power law 

• n D C  

Ell = E~C(ljpl/jc) n sign(jp) or JR =lc~/]EIII/Eo "sign(Ell) (2.2.3) 

or an exponential expression [7, 8] 
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~exp[(ljpl-L)lj,] o r  jp=j~ l+(jl/j~)ln El l  EI~ cjp sign(EIt) ' 

(2.2.4) 

D C  
whenever JEll ] < E0 • j~ can be referred to as the critical current density. The ratio jl/jc, 
called the smoothness factor, is typically smaller than 2 .10  -2 . 

If we assume the usual linear critical state relation 

Ell = Ps[Je -J~ sign(Ell)[ + E0 pc , for IEIll > E0 De (2.2.5) 

with Ps the flux flow resistivity, for larger values of ]Ell 1, a continuous function je(Eu) exists 
2 2 1 / 2  over the entire jp domain. The 'critical' current density Jc is a function of B3- = (B x + B2) 

and Bii [9] and temperature T. 
Under  AC conditions, i.e. both /~3- and Btl # 0, filaments exhibit a dynamic resistance 

described by the following relations 

• ~ / r A C  
jp = J¢/zll /z0 , 

jp = j~ sign(Ell), 

I Elll < E2 , 

IE,,I > EU. 
(2.2.6) 

Ac (8/3,r)R~IB3-I [10]. The influence of Bit on the dynamic For round filaments E 0 = 
resistance never has been investigated. Since the DC resistivity will become much smaller 
than the dynamic resistivity already close to Jc we will neglect the DC resistivity in all 
numerical AC calculations. Filaments are said to be unsaturated or saturated, whenever I 
is smaller or equal to jc respectively. A sharp boundary separates the unsaturated from the 
saturated regions in the filamentary zone. 

In cylindrical coordinates the constitutive equations then read 

J r  = 0"3- E r , 

j,p =/3r]s + or**E, + Or, zE~, (2.2.7) 

j~ = j~ + o ' ~ E ,  + o '~E~, 

with: /3 = 2,r/Lp, tg ~b =/3r ,  Js is the superconducting component of ]z: 

L = n j .  cos 

or~ = 0-3- cos2@ + orll sin2@ = o-3- + Ao- sin2~b , o-z = Aor sin q, cos ~0, (2.2.8) 

orzz = orll COS2I]/ "1- Or3- sin2qJ = °rll -- mor sinZq,, 

where Aor = orll - °'l" 
The above model originates from Carr and is called the anisotropic continuum model. 
A further simplification of the constitutive equations can be obtained by putting E0 ° c =  

Eo A¢= 0. This means that in case of AC conditions the filament radius and its resulting 
dynamic resistivity is neglected. This is allowed whenever the (induced) components of E are 
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AC 
E 0 . Filaments thus will be saturated whenever  Ell = E¢ sin ~O+ much  larger than 

E z cos qJ ~ 0. In the unsaturated case the constitutive equations further reduce to 

Jr -~ f l i E r ,  

j~ = f l r js  + o'± E~ , (2.2.9) 

j~ = j, + tr± E= , E= = - [3 rE~ . 

This reduction makes  the Maxwell equations accessible for analytic considerations. It  may be 
no ted  that  trtL disappears f rom the equations regardless of its value. 

2.3. The applied field B A 

Each  of the components  of the applied magnetic field B A may be periodic functions of q~ and 
z. We separate  the total  field B in an applied and an induced part  B = B g + B I. B A then is the 

field genera ted  in the volume of the conductor  (wire, cable, braid) by currents outside the 
conductor ,  B ~ is the field generated in all space by currents flowing inside the conductor.  In 
all cases considered here  no current passes through the conductor surface. If  B A =  0 one 
speaks  of a self field problem.  

If  we follow the path  of one strand in a fully transposed cable the local applied field 
componen t s  will vary periodically since the direction of the strand will change compared  with 
the general  direction of the applied field. Moreover ,  if a multi coil system like a tokamak  is 
considered,  also other  period lengths of the applied field have to be considered. 

In general  the applied field can be thought of as the sum of four basic components .  In 
cylindrical coordinates the two components  uniform in z are 

B~' = B~(sin q~, cos q~, 0 ) ,  B A = B2(0, 0, 1) 

and the two periodic in z: 

B~ = B2(l~(pr ) sin q~ 
I i (pr)  

sin pz, - -  
pr 

cos q~ sin pz,  I i (pr  ) sin q~ cos p z ) ,  

B 2 = B4( l l (pr  ) sin pz,  O, Io(pr ) cos pz ) .  
(2.3.1) 

B g and B g have their main contribution in the y-direction, B g and B A in the z-direction. I 0 
and 11 are Bessel functions of  the second kind. p = 2~r/Lz, L~ is the period length in the 
z-direction.  These four components  all are regular solutions of ~ r ' B A  ___~7 × B A =  0 for 
O<~r<~R. 

The  coefficients Bi, i = 1, 4, are functions of time. Two cases are considered here: the 
periodic t ime dependence  Bi = B 0 e -~0'` and the linear t ime dependence B 0 = 0 for t < 0 ,  
B 0 = t~t for t/> 0. In the latter case we have to deal with an in t ime decaying effect of the 
transient  occurring at t = 0. For  large times compared  to specific response times of the 
system, I~ ~ will vanish and we will refer to this situation as the stationary case. 

2.4. The induced field B l and the boundary conditions 

The  shape of the induced field B ~ outside the wire, resulting f rom the current distribution 
induced in the wire by the applied field B A and the t ransport  current I n in general has a very 
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complicated structure. When the applied magnetic field is described using some Fourier 
terms in the ~o and z-direction, higher Fourier modes can appear in the induced field outside 
the wire due to: 

a. The non-linear jf)(Eii ) relation, which may result in the occurrence of boundaries 
r(~o, z, t), separating saturated and unsaturated regions; 

b. the finite sample length, due to boundary conditions at the ends, i.e. at z = -+L, where 
2L is the length of the sample. 

The induced field can be calculated from V. B I = V × B I = 0 under the condition B~(r--~ ~) = 
0. 

For each of the applied fields B A given in (2.3.1) we get 

B~ = ~ am(sin m~o, cos m~o, 0) ,  
m 

B~--0, 
B~3 = ~ ~ bnm(K'(npr)  sin m~0 sin n p z ,  (2.4.1) 

n m 

Km(npr ) sin m~ sin npz/npr ,  Km(npr ) sin m~ cos npz) , 

B I = ~ c , (K l (npr  ) sin npz,  O, - K o ( n p r  ) cos npz ) .  
n 

Here am, bnm and c n are functions of t which still must be calculated; K 0 and K~ are Bessel 
functions of the second kind. 

The induced field from the transport current I A is given by: 

I B ¢ = txolA/27rr . (2.4.2) 

In general the (double) summations have to be taken over an infinite number of terms. 
Notice that the exact form of the applied field is given, equation (2.3.1), but only the shape 
of the induced field outside the wire is given, equation (2.4.1). The currents and field 
components inside the wire must now be calculated using that the values of the coefficients in 
(2.4.1) follow from the continuity of B ~ at r = R. In numerical calculations it is sufficient to 
impose the boundary conditions in an integral way [5] (see Section 4.2.2). Other boundary 
conditions, to be fulfilled when determining the solution of the Maxwell equations, are 
Er(R ) = 0 and B~(0) = B~(0) = 0. 

It may be noted that the response to a linear combination of B~ given in (2.3.1) is not 
necessarily a linear combination of B~ given in (2.4.1). Such complex problems, however, 
have not been studied so far. 

2.5. The magnetization and dissipated power density 

In a virgin filament, changes of the external field will induce screening currents which hold 
up the penetration of the external field into the filament. Flux penetration occurs because the 
current density is limited by the critical current density. The penetration field is the magnetic 
field amplitude beyond which the interior of the superconductor can no longer by shielded 
from the external magnetic field. As a consequence, for magnetic field changes larger than 
the penetration field, the total amount of superconducting material is positively or negatively 
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saturated. The flux penetration process is not reversible, i.e. the magnetization shows a 
hysteresis behaviour. Subjecting a superconductor to an alternating magnetic field therefore 
involves dissipation. So inside the filament a closed current loop appears having an effective 
magnetic moment. The averaged M in a multifilamentory superconductor results from 
adding all the small magnetic moments of current distributions inside the filaments. 

We already saw this in Carr's continuum model where for averaged quantities we found 
equation (2.1.3). In this equation only M is reminiscent of the variations in current density 
within the filaments. 

The induced screening currents will penetrate the whole filament if the field change 
amounts [11] 

Bpl I = tZoJc, R I , in parallel field change, 

2 
Bp± = 7r ~°Jc~Rs ' in perpendicular field change. 

(2.5.1) 

jc~ and Jc~ may have different values due to the production process of the wire. A field 
change of 2Bp is needed to bring the filament from one state of saturation into the opposite 
one. In an array of widely spaced filaments with 6-fold symmetry and a perpendicular field 
change larger than 2Bp a constant magnetization is obtained 

4 
M± = 37r nJczRrsign( l~±) ,  if/3tl = 0 ,  

1 
Mli = - ~ rljc~Rr sign(/~ll), if/~± = 0. 

(2.5.2) 

If the filament carries a transport current equivalent to an average current density jp the 
magnetization is in a good approximation reduced by a factor 1 - (jp/Jc) 2 [5]. The local loss 
power density p is given by 

p = j - E - M . I ~  

2 
= crz(er 2 + E 2) + CrllEii + njpEii - M±t~ l - Mii/3il , (2.5.3) 

where either/3± or/~11--0. 
Values for M~ and Bpx for hollow filaments and filaments of square cross section have 

been reported by [12] and [10], respectively. 
Notice that in the Maxwell equations (2.1.4) the magnetization M is neglected while in the 

loss calculations, equation (2.5.3), the loss term due to the magnetization is present. The 
reason for neglecting M in equation (2.1.4) is twofold: 

1) IV x mMI '< Iv x BI ,  

2) V x M = O because M is constant if B > 2Bp. 

3. Analytical solutions 

The solution of the Maxwell equations can be found analytically only if a considerable 
reduction in the complexity of the problem can be obtained. Four examples will be given 
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below. In the first one the conductor,  e.g. a hollow wire of twisted filaments, is represented 
by a surface current,  with linear properties, only. It should be remarked that this model is 
also valid for a hollow cable of twisted strands. In the second and third example the solution 
for uniform fields perpendicular and parallel to the wire are given. In the last example the 
solution in one turn of a cylindrical coil placed in a uniform field perpendicular to the coil 
axis is presented.  

The non-linear character of the problem, resulting from the non-linear il l-component of 
the constitutive equation, can be removed by assuming that the whole interior of the wire is 

0 unsaturated. In order  to account for the boundary condition Er(R ) = 0 or B , ( R ) =  B ,  in 
rotational symmetric problems a surface current J,  which also behaves linearly, is intro- 
duced. J flows in the filament direction and has components  J~ and J , ,  with J ,  = f lRJ, .  If 
Er(R-  ) # 0  the condition Er(R +) ---0 is fulfilled if 

O z J  z + R - l o , p J ~  = O - E r ( R - ) ,  (3.1) 

which relation follows from conservation of current at the surface of the wire. Er(R-  ) and 
Er(R + ) denote  the limiting values for r ~ R, if r < R or r > R respectively. The continuity of 

I I B ~ at r = R is maintained, but for B ,  and B~ the following relations replace the continuity 
requirement  in absence of the surface current J: 

B ! + i R -  , ,p(R ) - B¢(  ) = I~oJz B'z(R-)  - B',(R +) = I.%J¢ (3.2) 

These discontinuity relations follow from the Stokes versions of the Maxwell equations. The 
analytical approximations should be compared to numerical solutions taking into account the 
spatial extension of the shielding currents at the surface and the non-linear E - j  relation. 
Numerical solutions will be presented in Section 4. 

3.1. A hollow cylinder in a periodically applied field 

If we consider a hollow cylinder of infinitesimal thickness and surface conductivity o- 
perpendicular  to the filament direction, we can write for the most general applied field B A 
with a fixed frequency to [10]: 

B A ~ ~ A i(m,+,pz-o,t) , r = a,,, e (lm(n p ), ilm(npr)/npr, ilm(npr)). 
n m 

For r < R the induced field B ~ can be written 

B' = ~ ~'~ a,,, eie~+'PZ-°")(l'(npr), ilm(npr) /npr, ilm(npr)) 
n m 

and for r > R, since B r is continuous 

B I = ~ ~ a,, n ei(m*+"PZ-'°')lm(npR )/K,~(npR) 
n m 

( K ' (npr) ,  i K,, (npr) /npr, i K m (npr)) . 

If we apply equation (3.2) we find 
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I~o(J~, Jz) = ~'~ ~'~ ianm ei(m~+'PZ-~'°/nP R" K:(npR)(-1 ,  m/npr). 
rl m 

I f  we  now wri te  the  const i tu t ive  equat ions  in the  fo rm 

C 2 o'E~ = os ~bJ~ - sin ~b cos ~J~ , 

ryE Z = sin2~bJz - sin ~b cos ~bJ~ , 

we  find f r o m  R-~O~E~ -O~E~ = -OrB r 

• 2 t t A -lkeototrg(npr) K,.(npg )Im(npr)a.m 
anm (m sin 4, + npg cos ~b) 2 + itOlXotrR(npR)EK'(npR)I'(npR) 

and  for  the  O h m i c  loss P pe r  unit  cyl inder  surface  

1 ( m sin ~0 + npR cos ~O ] 2 2 
P= ~, Pnm = n E m E - ~  \ p.o(npR)2K.(npR) ] la.m[ • n,m 

In  Fig. 3.1 P4.1/Po is shown for  var ious  values  of  to~-= to/~0trR/(2 sinZqJ), P0 is the  loss in a 
un i fo rm  steadi ly  increasing pe rpend icu la r  f ield/~x = at: 

P0 = o" "A 2 O" .A z 2 -2),  
8 2 (1 + t32R = Bx (R + t3 

T h e  limit  o f  P4,~/Po for  Lz/L p ~ oo equals  1/2  because  of  the  t ime averaging.  

3.2• Twisted wire in uniform perpendicular field 

In  ana logy  with the  p rev ious  t r e a t m e n t  the  case of  a pe rpend icu la r  appl ied  field can be  given.  
F o r  r easons  of  brevi ty  only the  case of  z - invar ian t  s inusoidal  t ime  d e p e n d e n c e  of  the  appl ied  
field will be  presented•  For  m o r e  detai ls  see [13], [14] and  [15]• 

0 
13. 

2"00 I 

! "50 I 

I .OOIt 

8 

5 10 15 20 

2L/Lp 

Fig. 3.1. P4,1/Pc~ for various values of  toz [10]. 
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T h e  Maxwell  equat ions  for  this special case read 

O . E z  = i w r B ~  , 

- O . E ~  = i w B .  , 

a r rE~  - b ¢E~ = i w r B ~  , 

O ~B~ = 1.6oO-rrEr , 

- O , B ~  = ~ r l x o j  ~ + IXo~r±E ~ , 

OrrB * - O ¢ B  r = r ( t x o j  ~ + Izo~r±Ez) . 

A s s u m i n g  

B r = g sin q~ e - i w t  , 

i o )  - iaJ t  
E~ = --~ h sin q~ e , 

-- i~t  
tZoj ~ = i w r k  cos ¢ e 

with ~- = ~[.L00"±/~ 2, we get  for  the surface current  

-i~ot 
tZoJ ~ = - ioJ~ 'h(R)  cos 9 e 

and  J~ = [3RJ~,  and the remaining componen t s  of  E and B 

i~o io~t 
E~ = - ~  g cos ~o e -  

B z = - i w T [ 3 r h  cos q~ e -i'°t , 

- - i ~ t  
B = ~ r ( F g )  COS ~ e 

Put t ing  

(3.2.1) 

(3.2.2)  

g = A  ~'~ a . u  2" ,  h = A  ~ b . u  2",  with u = / 3 r  
n = 0  n = 0  

r ecur rence  relat ions for  a n and b ,  can be derived. 

a_  l = b  1 = 0 ,  a o = b  o = 1 ,  

4 n ( n  + 1)(1 - iw~-)a n = ioJT[((2n + 1) z - 1 + i w r ) b , _  1 - (2n + 1 )an_ l ] ,  

4 n ( n  + 1)(1 - i~o~-)b, = io~'[i~or(2n + 1 )b ,_  1 - an_ l ] .  

(3.2.3) 
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Notice that the convergence interval of the power series is bounded.  From the boundary 
conditions A can be determined to be 

A = 2 B o / [ A  + (1 - itor(1 + /32R2))A] ,  (3.2.4) 

and consequently the power loss per unit length 

S=f f__~RE • 
2/., 0 ~B,p . 

Here  B* is the complex conjugate of B , .  If we write 

7rR 2 
• 2 t S = - -  ltoBo(/X + i/x") 

2/% 
(3.2.5) 

the values o f / x '  and / z "  can be plotted as shown in Fig. 3.2 [15]. 
For  small /3 the ~" ( /z ' )  curve has an ellipse as a limiting envelope whereas for /3 ~ ~, 

where the filaments degenerate in rings, the relation for a solid copper wire 

Ix = 1 + J 2 ( k r ) / J o ( k r ) ,  (3.2.6) 

where k 2 = ito/x0o- ± and J0 and J2 are Bessel functions of the first kind, must be obtained. 
This limit cannot be verified using these series expansions for convergence reasons. 

It may be noted that for small to the power loss is [15] 

, t o t , ,  2 , with r ' -  2 L\2~-]  (3.2.7) 

ra ther  than the widely used expression for r '  where the term R 2 is omitted. 

1 

8OO 

600 

l, JL" 

600 

.200 

0 
0 .200 .t, O0 600 .800 I 

Fig. 3.2. Representation of the Poynting vector in terms of a complex permeability for a uniform perpendicular 
applied field [15]. 
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3.3. Twis ted  wire in parallel  f ie ld  

The shape of the applied field is chosen to be rotational symmetric.  Then the Maxwell 
equations read 

- O z E  ~ = - O t B  r , 

OzE " - O r E  z = - O , B ¢  , 

O,(rE¢)  = - rOtB z , 

(3.3.1) 

-O~B~ = iZoo-rE r , 

O z B r  - O r B z  = flrl-CoJs + tZoo'± E~ , 

O,(rB¢)  = r(IZoL + ~ r ± E ~ ) .  

If  we assume that the problem is also z-invariant,  we immediately get E,  = B r = 0 irrespec- 
tive of  the time dependence of B a. Moreover ,  it can be shown that E~ +/3rE~  = 0 implies 
B ~ - / 3 r B  z = 0  [16]. E,  = 0  implies that no current exchange in the r-direction occurs, 
irrespective of  the value of o-, [17, 18]. 

Two cases can be considered with respect to the time dependence:  

B A = 0  t < 0 ,  B A = a t  t>~O or B A = B o  e-i'°t . 

For  E¢ a partial differential equation can be obtained, 

1 2 2  2 2  " 
0 r - (1 +/3  r )OrrE ~ = (1 + 13 r )/x0o-~E ~ . (3.3.2) 

r 

In principle the equation can be solved applying a separation of variables technique. This has 
so far not been done. In the stationary case, i.e. after the decay of the transient effect, the 

solution reads 

E~ = - a  In(1 + f12r2)/2f12r,  

B ,  = f l r a t / ( 1  + / 3 2 r 2 )  , 

B z = at~(1 + f lZr2) ,  

and 

/zoj s = 2/3at/(1 +/32r2) 2 , 

F rom (3.3.2) it can be seen, that if o- l 

B A = a t  = tXorljcLp/4~r . 

(3.3.3) 

(3.3.4) 

= 0 ( r  = 0) saturation occurs first at r = 0 and 

(3.3.5) 
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Thus saturation in the inner region occurs after a change in B g independent  of the rate of 

change of B g. 
In case a sinusoidal time dependence of B g is assumed B A = B 0 e - i "  it is useful to put 

E~ = ioog , E z = -ito[3rg , 

By = flO~(rg) Bz 10~(rg) 
' r 

/xoj , = k .  

(3.3.6) 

Writing 

g = A ~ a n U  2 n + l  , k = A ~ b . u  2" , with u = fir 
n = 0  n = 0  

the following recurrence relations for a ,  and b,  exist: 

a_ l = b _  1 = 0 ,  a 0 = 1 ,  

4(n + 1)(n + 2)a .+ 1 = - [ 4 ( n  + 1)2a. + ito3-(a. + a . _ l )  l , 

b .  =/32[(2n + 1)2a. + ito3-a._l] , 

3" = J U , 0 O r l / f l  2 ° 

A The  constant A follows from the boundary condition for By = 0 

A = Bo/fl(1 + f12R2) E (2n + 2 ) a . ( f l R )  2" . 
n = 0  

(3.3.7) 

The  loss power per unit of length can be determined from the real part of the Poynting 
vector 

~rR 
S = E x B * .  (3.3.8) 

t% 

If we write 

~rR2 ieoB~(/.e' + i/z") 
o 

the real and imaginary part of/ . t  = / x '  + tz" can be plotted for to3- and f iR as a parameter ,  
Figure 3.3 shows these curves [15]. For  f iR = 0, i.e. no twist, the curve for a pure metallic 
bar is found whereas for/3R--~ ~, i.e. the filaments degenerate in rings, the semicircle of a 
paramagnetic  material must be obtained. 

3.4. Field in the plane o f  a turn of  a cylindrical coil 

In important  practical applications wires are used in ring-shaped configurations, e.g. the 
D-coils in the Next European  Torus fusion reactor [19]. In this subsection the properties of a 
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0 . 5  1 

i" 

0 1 

Fig. 3.3. Representation of the Poynting vector in terms of a complex permeability for a uniform parallel applied 
field [15]. 

D-coil  in an A C  magnetic field are studied, using an ideal torus configuration for the wire, 
which represents  one turn of the coil. The radius of the wire is R and the mean radius of the 
torus is R 0 >> R (see Fig. 3.4). 

The  applied time dependent  magnetic field is considered to be uniform and parallel to the 
plane of the torus with constant t ime derivative /~A. This field, chosen in the z-direction 
(/~A) will be perpendicular  to the wire for coordinates (x, z ) =  ( 0 , - R 0 )  and parallel for 
(x, z) = (-+ R 0, 0). For other  coordinates (x, z )  on the wire the field is partly perpendicular  
and part ly parallel. 

We want to per form the calculations in the natural r, q~, 0 system where 0 represents the 
angle on the torus with the positive x-axis and r and q~ are the cylindrical coordinates 
perpendicular  to 0. The configuration and definitions are outlined in Fig. 3.4. The (r, ~, 0) 
system is a positive oriented orthogonal  coordinate system. The coordinate t ransformation 
for the vector  x with x, y and z coordinates to the new coordinate system reads: 

Fig. 3.4. Circular configuration for the wire with radius R in a torus shape with mean radius R o. Here R "~ R~j [20]. 
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(x, y,  z) = ((R 0 + r cos q~) cos 0, r sin q~, (R 0 + r cos q~) sin 0 ) ,  (3 .4.1)  

which  gives for  the  e l e m e n t a r y  lengths:  

h r = 1 , h¢ = r ,  h o = R o + r c o s  q~ . (3 .4.2)  

In  this new coord ina te  sys tem the Maxwel l  equat ions  in case of  a s ta t ionary  p r o b l e m  read:  

(V × E) ,  = -10~Eo 1 [OoE ~ + sin ~oEo] = _ /~A , (3.4.3)  
r R 0 + r cos q~ 

"g (3.4.4)  1 [_OoE + c o s ~ E o ] = _ B ~  , (V x E)~ = - O r E  o R o + r cos ~o 

(V × E)o = 1 [Or(rE) Oq~Er] B 2  
r 

(3.4.5)  

T h e  app l ied  magne t i c  f ield/~A can be wri t ten  in its r, q~, 0 componen t s :  BA = /~A(cos ~0 sin 0, 

--sin ~0 sin 0, cos 0).  Conse rva t ion  of  the bulk  cur ren t  densi ty  j in the  in ter ior  of  the  wire is 
wr i t t en  as: 

V.j=  1 
r [Or(rfi) + O j~] + R o + r cos ~0 

[cos ~ojr - sin ~pj~ + OoJo] = O . (3.4.6)  

A t  the  surface  of  the  wire r = R we consider  a surface  cur ren t  with c o m p o n e n t s  J~ and Jo in 
the  q~ and  0 di rect ion respect ively .  F r o m  the fact tha t  no cur ren t  flows out  of  the wire  at the  
b o u n d a r y  r = R,  conse rva t ion  of  cur ren t  is wr i t ten  as: 

- ( R  o + R cos qQRjr(r =- R )  + (R o + R cos q~)O,Jso - J~R sin q~ + ROoj o = 0 .  (3.4.7)  

T h e  dif ferent ia l  equa t ions  canno t  be  solved direct ly so we use a p o w e r  series in r because  

R ~  R o. We show the calculat ion of  E in detail .  Subst i tut ing Ell = 0 so E o = - [ 3 r E ,  in 
equa t i on  (3.4.3)  we  obtain:  

Lp "A r "A 
2~O~E~ + ~ OoE~ = L p n  r + -~o [Lp cos  q~n r + 2~" sin q~E~ - 2~- cos ~ d ~ E ~ ] .  (3.4.8)  

T h e  h o m o g e n e o u s  solut ion of  (3.4.8)  is zero  [20]. For  finding the  par t icular  solut ion we  wri te  
_~(1) 2r(2)  This  gives: E~ as a p o w e r  series in r: E =E(~ ° ) + , ~  + r  tz~ + - . . .  

Lp (o) Lp[~A 
27rO~E~) + Ro O°E~ = 

and 

Lp O ~(1) Lp "A 27r 27r _~ ~(o) 
2"ri'O,pE~ 1, + ~ o~,  = --Ro cos ~pB, + ~ sin s~=,- ~.(0) _ __R0 cos soo,~,~ 

fo r  E (°)~ and E¢(1) respect ively .  T h e  solut ion is: 
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E(°) - 

and 

E (I) = _ _ _  

L. J.M. van de Klundert et al. 

LpB? 
2 ~ --; z~ ~r~1--K ) [sin ~ sin 0 + k cos ~ cos 0] 

2 
cos 0 - 

/~Ak(1 + 2k 2) 
(i-_--~--~--_ ~-~)sin 2q~ sin 0 

B~k2(5 + k 2) 
- 2 ~ - - ~ - ~ ( ~ - - ~ z  ) cos 2q~ cos 0 

with 

k -  Lp 
2 7J.R0 • 

The higher order Fourier terms in ~0 appear because h 0 contains the term r cos ~o, see 
equation (3.4.2). For the other electric field terms and the currents the power series 
approach is equivalent. 

Due to the shielding currents the maximal transport current at low losses (/max) is for small 
k approximated by: 

Lp  1 ] 
/ m a x  = "n'RE ~TJc- 2~IBAI ~-~'~ • (3.4.9) 

The maximum value of I/~AI for which the centre of the wire is unsaturated is given by: 

.a'rl J c k2 
I/~gl < - -  (for small k ) .  (3.4.10) 

or± L p 

Notice that for this value of IB l, /max is zero. Furthermore, the coupling losses per unit 
volume are given by: 

_ A t / L z , ,  ~ O.±I~A 2 a 2 
or+B-2 t--=- ' ,z+ ~ -  k--- ~ (for small k) (3.4.11) P 

Vol 2 \27 r /  4 

where the first and second term are due to the perpendicular and parallel component of the 
applied field /~A respectively. The first term is half of the value arising in case the field is 
perpendicular over the whole length of the wire. 

Another  commonly used approach for calculating the field and currents in a toroidal 
configuration is as follows: consider a straight wire and apply a spatially periodic time 
dependent  magnetic field. The torus problem can be approximated by a straight wire in a 
spatially dependent magnetic field for small values of k [20]. 

4. Numerical solutions 

4.1. Introduction 

In the previous section, where analytical solutions were calculated we had to idealize the 
problem significantly in order to be able to perform the calculations. In this section we 
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investigate aspects concerning numerical solutions. The reason for performing numerical 
calculations is threefold: 

(1) to find bounds for the validity of the analytical approximations (for design purposes), 
(2) to compare non-trivial analytical solutions with numerical data (checks on the solution 

methods), 
(3) to be able to obtain results where no analytical calculations are possible, mainly due to 

the non-linear E- j  relation. The most important cases that cannot be treated analytically 
are: 

(1) R i ~ O, this case will not be considered in this article, see [10], 
(2) time dependency/transient phenomena including saturation, 
(3) I A ~ 0 ,  

(4) calculation of the exact form of boundaries between positive/negative/unsaturated 
regions. 

These items will be considered in this section. We treat the basic ideas of the numerical 
model and present some specific numerical results. The comparison between numerical and 
analytical results is performed for parallel applied magnetic fields. 

Even the largest supercomputers are not able to cope with general 4 dimensional 
space-time problems due to large cpu times and high storage requirements. Therefore in 
general we have to reduce the dimensions of the problem using symmetry arguments like 
rotational symmetry (~-invariance) or z-invariance. Consequence is that some terms in the 
Maxwell equations are not present anymore. The number of unknowns and the cpu time are 
reduced considerably. 

4.2. Numerical model 

Three important aspects can be determined concerning the numerical model: 

*) Grid using the method of grid staggering, 
*) Boundary conditions, 
*) Non-linear E- j  relation. 

We now investigate every aspect in more detail. 

4.2.1. Grid staggering 
When considering a convenient grid, use is made of the so-called staggered space grid. 
Maxwell's equations in integral form read: 

fa~ B " dl = f fs tZoj " e~ dS , 

fa~ E . d l =  f f s - B .  % dS .  

(4.2.1.1) 

These equations are discretized second-order accurate in time and space. For the time 
discretization mostly the three point backward method is used and for the space discretiza- 
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tion the midpoint rule is used. These discretizations can be implemented very conveniently 
on a staggered space grid. As an example we consider a two dimensional r - ~0 grid given in 
Fig. 4.1. Recognize that V. B and V × E are calculated at the same position (solid curve in 
Fig. 4.1), as well as V x B and V.j  (dashed curve). The formulae for discretizing the 
equations using the solid basic cell as considered in Fig. 4.1 read: 

V'B =0:  ( i  + 1) A~o B , ( i  + 1, j )  - ( i  - 1) Aq~ B , ( i  - 1, j )  

(V x E)~ = -/~z: 

+ By( i ,  ] + 1 ) -  By(i ,  ] -  1) = 0, 

(i + 1) Aq~ E~(i  + 1, ], k)  - (i - 1) A~0 E¢(i  - 1, ], k )  + E,( i ,  ] - 1, k)  

-- Er(i, ] + 1, k)  = - 2 i  Ar A~o [3z(i , ], k)  , 

with 

/3z(i, j ,  k) = (3Bz(i, j, k) -4Bz( i ,  j, k -  1) + B~(i, j, k -  2))/(2 At).  

The indices i, j, k are related to the r, q~, t coordinates, respectively. The discretization of the 
equations using the dashed basic cell are similar to the above given discretizations. 

The basic molecules in three dimensions for both equations are given in Fig. 4.2, 

2 n~ 
2n I, ~) 

[] O. 

2® 0 

1-013 ® [] -~3 

o 
® 0 

[] @ 2  

? _ _  ® 
J , ,O 

x Ep 
0 E~ 
[] Ez 
x Bp 
0 B~ 
[] Bz 

Fig. 4.1. A small version of the grid, used for the discretization of the electromagnetic field inside the wire 
(rip = 2, n~ = 3) [5]. 
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Fig. 4.2. The two basic molecules for the 3-D staggered grid [10]. 
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~ Y  

respectively [10]. These two molecules can be combined to a staggered 3D grid (Fig. 4.3). 
Notice that the staggering of these two molecules is imposed by the coupling of the two sets 
of Maxwell's equations. This grid, useful for isotropic and weak anisotropic media, can also 
be used for superconducting media. For practical superconducting wires with twistlength 
very large compared to the radius, the superconducting constitutive equation is merely a 
relation between the axial component of the electric field and the current density. One has to 
make an interpolation of the axial component of the electric field for calculating the 
superconducting current density in the other direction. This interpolation is a weak point of 
the numerical method because it influences the iteration process, which will be described 
later. Normally this interpolation can be circumvented for a 2D grid, by adapting the grid. 
The numerical scheme is second order consistent at those points where E and B are 
sufficiently smooth. At the free boundaries, however, the consistency is only first order in 
the discretization steps, because then j~ and Jz are not continuously differentiable functions 
of E. Furthermore, there is a limitation on the time step because the initial guess (due to the 
iteration process, treated in Section 4.2.3) may be too inaccurate for large time steps [5]. 

4.2.2. Boundary conditions 
The boundary condition for the currents is jr(R) = 0 which can easily be implemented on the 
grid. 

/ I ; '  ~ z Dj  

- 4  . 

By 

Fig. 4.3. The three dimensional staggered grid for the computation of the electromagnetic fields [I0]. 
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In general,  for solving Maxwell 's  equations, the magnetic field in all space must be 
considered: so not only in the interior of the wire but also in the vacuum surrounding it or 
even in the centre for a hollow wire. The boundary condition is formulated for r---~ 0o where 
the induced magnetic field must vanish. However ,  we are only interested in the solution in 
the interior of  the wire and need boundary conditions on r = R. They can be found 
considering that outside the wire the magnetic field satisfies AB = 0 because no currents are 
present .  The magnetic field components  outside the wire can be written using double 
summat ions  in ~o and z over  an infinite number  of terms which then are matched to the 
magnet ic  field at the surface of the wire itself. In this way the boundary condition for r---~ ~ is 
t ranslated into a boundary condition at r = R. Result is that we only have to discretize the 
equat ions in the interior of  the wire with correct boundary conditions at r = R and r = 0. 

This translation of the boundary  condition will now be explained in detail for a z-invariant 
r - ~o grid (Section 4.2.2.1) and a q~-invariant r -  z grid (Section 4.2.2.2) where only one 
summat ion  in the Laplacian solution remains. 

4.2.2.1. Boundary condition at r = R for the magnetic field for a z-invariant problem 
For  a uniform applied magnetic field in the y-direction perpendicular  to an infinitely long 
circular wire (so Bz(R ) = 0) we can match B, and By at r = R with the r - ~ p  dependent  
Laplacian solution outside the wire (r ~> R)  (see Section 2.4): 

Br(r, q~) = BA(t) sin ~ + ~ a n sin n~0, 
n = l  

{R~n+l 
By(r, ~) A =By( t )  c o s g +  ~ - a n l x r  } cosnq~ . 

n=0 

(4.2.2.1.1) 

H e r e  use is made of the symmetry  arguments Ar(r, q ~ - 1 7 r ) = - A , ( r ,  ½ ~ ' - q 0  and 
A,(r ,  q~ - ½7r) = A, (r ,  ½~r - q~) with A r, A ,  the r and ~o components  of  any vector field A. 
The  terms a n can be eliminated using the orthogonali ty of sin nq~ and cos nq~. This provides a 
relation between B~ and By, which at the wire surface r = R gives: 

/z0IA(t) 
f f  By(R) dq~ - (for n = 0) 

2R 

A B,(R,  q~) cos n~o dq~ + Br(R , ~o) sin nq~ d~0 = ~-By ( t ) t~ l ,  n (for n/> 1) .  

He re  6i, / is the Kronecker  delta. For the numerical grid refer  to Fig. 4.1. With Aq~ = 7r/N~ 
for any (N~ + 1) equally spaced By points on the wire surface (r = R),  this relation can be 
used N~ times in its discretized form: 

N~+I N~¢ 

By(R, q~j) cos n~o] + ~ B~(R, q~i) sin n~] = A~ (n = 1, N~) 
j = l  j = l  

and the symbol B '  r is introduced, because in our grid Br is not defined at the surface, but at 
positions half a cell dimension inside the wire. To calculate B~ it is approximated by a linear 
interpolat ion of the value Br(~j ) at a grid point near  the surface and B~(q~i) at an imaginary 
point  half a cel dimension outside the wire. Using the Maxwell equation V. B = 0 at the wire 
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surface, the boundary equations for B~ are found. The (N,  + 1) th equation for B, (R ,  N¢ + 
1) is 

N, + a ixolA(t) 
B (R, j ) -  

i=~ 2R A~ 

4.2.2.2. Boundary conditions at r = R for the magnetic field for a ¢p-invariant problem 
Consider an infinitely long circular wire in a periodic applied magnetic field with periodicity 
length L z with only r and z components.  This ~-invariant problem will be discussed in more 
detail in Section 4.3.2B. We match B r and B~ at r = R with the r - z dependent  Laplacian 
solution outside the wire (r/> R) where use is made of the symmetry argument OzBz = 0 at 
z = 0 :  

Bz(r, z) = Bg(t)lo(pr) cos pz + ~ -- anKo(npr ) cos npz , 
n = l  

Br(r, z) = BA(t)ll(pr) sin pz + ~ anKl(npr ) sin npz . 
n = l  

(4.2.2.2.1) 

Elimination of a n gives, substituting r = R :  

Kl(npR ) f~z Bz(R)cos npz dz + Ko(npR ) f~z 
Lz Lz 

Br(R ) sin npz dz = --~ BA(t)61,, 2~rR 

using the Wronskian [21]: I v (z) K~ + l ( Z )  -[- I v + 1 (z) K~ (z) = 1/z. Using the symmetry condition 
we see that S~ ~ = 4 J'c~ z/4, so only the interval 0 <~ z <~ Lz/4 must be calculated. The numerical 
implementat ion is similar to the r -  q~ grid (Section 4.2.2.1). 

4.2.3. Non-linear E - j  relation 
Due to the non-linearity in the E - j  relation the numerical solution cannot be found directly 
but the problem is linearized and iterated. 

The  iteration process [5, 10] is fully based on the non-linear relation between the parallel 
component  of the electric field Eli and the superconducting current density jp. The iteration 
process is as follows: every grid point is labelled. A grid point is labelled to be positively 
saturated if the previous or initial value of Ell > 0, negatively saturated if Ell < 0 and 
unsaturated otherwise. We use the constitutive equations related to the labelling and solve 
the set of equations. With the solution we check the predicted Ell. If the prediction is not 
equal to the solution we change the label, but for convergence reasons one should not allow 
an element  to change from a negatively saturated element into a positively saturated one or 
vice versa, but only allow saturated elements to turn into unsaturated ones or vice versa. 
There  is no mathematical proof  that this iteration scheme converges but in practice it works 
very well. Because Ell is calculated using E~ and E z it is best to calculate both electric field 
components  at the same position. 

4.3. Numerical results 

In this section we present numerical results. The most general grid is 4 dimensional in 
space-time but due to symmetry arguments the time dependency can be included or not and 
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the space grid can be 1, 2 or 3 dimensional. Subsection 4.3.1 deals with DC and stationary 
problems and in subsection 4.3.2 non-stat ionary problems are considered. In each subsection 
the dimension of the space grid is used to classify the results. Fur thermore  we compare  some 
numerical  and analytical results, mainly in case of parallel applied magnetic fields. 

When  not specifically ment ioned,  we consider a circular multifi lamentary twisted wire. 

4.3.1. DC  and stationary problems 
The  dimension of the space grid is used to classify the results: 

(A) 2-dimensional space grid 
An infinitely long multifi lamentary wire carrying a D C  transport  current in a constant 
perpendicular  applied magnetic field [22]. The set of equations is: V x B =/z0j;  V x E --- 
0. The problem is z-invariant so we need a 2D grid in the r - ~0 coordinates.  We have to 
translate the boundary  conditions for B at r---~ o, to a condition for B at r = R as was 
already explained (Section 4.2.2.1). The non-linear E - j  relation (2.2.7) is used, with 
jc(B±)  given by the Kim relation [23] and E ~ C = 0 .  Zero,  one or two boundaries 
separat ing saturated regions can appear.  The mesh contains about  10 x 10 grid points on 
the r - ~0 surface given by 0 ~< r ~< R and 0 ~< ~o ~< ~-. In Fig. 4.4 the saturated and non 
saturated regions are given in case 2 boundaries appear.  In Figs 4.5 and 4.6 the E z - I~ 
relation for the whole wire is given at constant applied field B A = 2 T  and at constant 

twistpitch Lp/Rw = 20 respectively. As can be seen, there is a very large increase in E~ 
as saturation occurs. 

Ano the r  D C  problem is described by Boschman [24] where he calculates the solution 
for superconducting films connected through matrix material.  Jc of every film is a 

periodic function of x: J~,~(x)=Jo(1-2lxl/L) and Jc,2(x)=Jo-Jc,l(X) with total 
critical current J0. For this z-invariant problem we need a 2D xy grid. For 2 values of I A 
the saturation pat tern is shown in Fig. 4.7. This current transfer through the matrix 
material  between the filaments causes Ohmic losses. 

In this class of problems we can also consider the stationary solution (i.e. 1~ ~ = 0) for 
an infinitely long wire subject to a perpendicular  A C  magnetic field, constantly 
increasing in time. The only difference with the already treated problem is the modified 

SAT ~URATED 

Fig. 4.4. Occurrence of saturated and unsaturated regions in the wire when two boundaries are present [22]. 
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Fig. 4.5. Electric field as a function of the scaled current, for various values of Lp/R,, at an applied field of 2 tesla 
[221. 

e q u a t i o n :  V x E = -1~ A. The  sa tu ra t ion  b o u n d a r i e s  for  ze ro  a p p l i e d  cu r r en t  a re  given in 

Fig.  4.8 [10]. R e g i o n  3 is s a t u r a t e d  by  coup l ing  cur ren t s  and  canno t  c o n t r i b u t e  to  the  

t r a n s p o r t  cur ren t .  O n l y  reg ion  1 can ca r ry  t r a n s p o r t  cu r r en t  which  m e a n s  tha t  the  

m a x i m u m  t r a n s p o r t  cur ren t /max  for  a p e r p e n d i c u l a r  field ra te  is r e d u c e d  as d e s c r i b e d  by  

[101: 

~±RIB.I  1 ] 
/ m a x  = I~ 1 - _ • nJ~ f3~-R2 . (4 .3 .1 .1)  

- 1  ~ 

--q,~-- 

o tog(e,) 
Ba [7"1 

~ 5 

- . 05  .00 .O5 
to~(t/,O 

Fig, 4.6. Electric field as a function of the scaled current, for various values of the applied field, and Lp/R~ = 20 
[22]. 
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2 

-L/2 -Xo 0 x o I_J2 -L/2 -x0 0 xo I./2 

Fig. 4.7. Saturated (shaded) and unsaturated regions of the superconducting surface layers. The arrows indicate the 
direction of the current transfer between the layers [24]. 

The  r - ~ o  grid size is about  1 8 x 4 2  in the r - ~  surface given by 0 ~  < r ~  < R  and 

0~< ~p ~< 27r. 

03) 3-dimensional space grid 
An  infinitely long multifi lamentary wire carrying a D C  transport  current with no applied 
field. The wire propert ies  are not constant,  but a periodic function of the axial 
coordinate  z. For  the i-th superconducting filament we consider e.g." 

[ 12oz )] 
j ¢ i ( z ) = j ¢  l + a i s m ~  ---v---+~ i , 

Lz 
(4.3.1.2) 

with 0 ~< a i ~< 1, L~ the periodicity length and qi some phase. This problem cannot be 
calculated analytically using Fourier  expansions because of the non-linearity in the E - j  
relation. 

The set of equations is: V × E = 0 and V. j  -- 0. A 3D x, y, z-grid is used taking into 
account one period length L z. These calculations are per formed investigating the 
influence of non-uniformity of wire propert ies on n values as described by equation 
(2.2.3). 

Fig. 4.8. The three different regions for the current distribution of a wire in an applied field B~. Regions 1 and 2 
are unsaturated, region 3 is saturated [10]. 
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4.3.2. Non-stationary problems 
Here  also the dimension of the space grid is used to classify the results: 
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(A) 2-dimensional space-time grid 
An infinitely long circular wire in an AC magnetic field parallel to the z-axis. The set of 
equations is: V × B =/x0j; V × E = -I~. Fur thermore  the non-linear E - j  relation (2.2.7) 
is used. For  this ~ - z-invariant problem the boundary conditions are: 

E .  (r = 0, t) = 0 ,  B.  (r = 0, t) = 0 ,  B.  (r = R, t) - /x°IA(t) 
2zrR ' and 

B~(r = R, t) = B ~ ( t ) .  

The initial conditions are E = B = 0 for t ~ 0. Using Maxwell's equations we directly 
obtain: E r = Br = 0 and so we have to solve 5 unknowns: E , ,  E z, Js, B , ,  B~ using the 
remaining 4 Maxwell's equations and constitutive equation (2.2.7). Notice that in the 
unsaturated regions where Elf = 0 the re la t ion/~,  =/3r/~ z holds. Starting from the virgin 
state, we see that B ,  = [3rB z until saturation occurs. 

Concerning the constitutive equations E , ,  E z and Js should be calculated at the same 
position. The magnetic field components  should be calculated in between. Because 3 of 
the 4 boundary conditions are given in terms of the magnetic field, it is most convenient 
to calculate the magnetic field components  at r = 0 and r = R. Then we only have to 
calculate E ,  (r = 0) using an extrapolation of the internal E~ values. The grid we arrive 
at is given in Fig. 4.9. 

In the previous section an analytical approximation for the maximum amplitude not 
saturating the interior of the wire and the loss power were given under  the assumption 
that all return current flows in a surface shell. Numerical approaches to the problem 
show that some peculiar and unexpected effects are, however,  present. Figure 4.10 
shows the time development  of the saturated regions when a z-invariant B ff = sin(tot) is 
applied at t = 0, fur thermore I A = 0. When tot < 7r/2 a negative saturated region starts 
in the outer  region of the wire. At tot = 7r/2 a positive saturated region starts at r = R 
but the negative saturated region moves inward and disappears at to t=  37r/2. This 
pattern repeats each period. In Fig. 4.11 a small time independent  transport current is 
present  and, as can be seen, the positive saturated regions penetrate much further than 
the negative ones. This means that a parallel applied field in an unexpected way reduces 

Ar 

r=O [ r=Ri 
R 

• ' • ! Ar - 

B E B E B N-1 

i:l t : 2  l:3:N 

Fig. 4.9. Grid for case 4.3.2A. 
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B A 

0 

0 u00 .SO O.S0 0 .70  0 .B0 0 .g0  1.00 
r/R 

Fig. 4.10. Numerical solution of the saturation of the filaments for a uniform B~ with sinusoidal time dependence 
and no t ransport  current.  

the current carrying capacity of the wire since at the outside a double layer of positive 
and negative saturated current exists. When we apply a sinusoidal magnetic field: 

B0 (ei~- _ e - . ° , )  BAz (t) = B o sin tot = 

the response of the electric field is (see Section 3.3): 

e- iWt  E~(t )  = - ~ ( g  + g* e 'O') .  

(4.3.2.1) 

(4.3.2.2) 

Notice that both B~ and E~ are real functions of time. Furthermore there is no applied 
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Fig. 4.11. Numerical  solution of the saturat ion of the filaments for a uniform B~ with sinusoidal t ime dependence 
with a t ranspor t  current  of  about  0.2 of  the critical current.  
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current so B~(R)= 0. Calculating the mean loss per unit length (/5) using Poynting's 
theorem we get: 

/5 O) 1 A* . . . .  (E¢(R)B z (R) - Ez(R)B*(R))R d~b dt . (4.3.2.3) 
27r Ix o 

Using the analytical approach from Section 3.3 we obtain: 

( 4 ) /5 = 27rR ig(R) lg*(R) Bo ( i g ( R ) - i g * ( R ) )  
/z 0 2/% 

/5 = 1rRwB~° . Im(g (R) ) ,  
/Xo 

(4.3.2.4) 

with Im the imaginary part of a complex number. 
Only the imaginary part of g(R) appears in the loss term. This is easy to see because 

for real values of g(R) the phase difference between B~ and E¢(R) is ~'/2, resulting in 
no loss because of the orthogonality between the sine and cosine function. 15 can also be 
found by calculating the dissipation directly from E and j: 

/5 = ~ E - j r  dr  dq~ d t ,  (4.3.2.5) 

with 

2 ovzE 2 + EII,oj p E "j = o'IIEII + (4.3.2.6) 

Numerically we can calculate either the contour integral (equation (4.3.2.3)) or the 
surface integral (equation (4.3.2.5)). Despite the higher work load, the surface integral 
is calculated because: 

(1) Using the contour integral we need E,(R)  which should be calculated extrapolating 
from interior values. Using equation (4.3.2.4) we see that the loss is very sensitive 
to the phase difference between Bz(R ) and E,(R) .  Calculating E, (R)  by extrapola- 
tion, this phase difference is calculated very inaccurately. 

(2) The time integration of the surface integral is a summation of only positive terms 
which is not the case for the time integration of the contour integral. 

For this type of problem (sinusoidally applied uniform B z field, no transport current) we 
now compare numerical and analytical results. In Fig. 4.12 the scaled loss 2~-/5/(toEB~) 
is given as function of the amplitude of the applied field B 0. The complete parameter 
setting is: B ff = B 0 sin t; I A = 0 ,  R = 1 0  - 3  m ,  Lp = 0.1 m; Rf = 0; Jc = 109 A/mE; r /=  0.5 
and or = 109 (~m) -1. Grid parameters: Ar = R/50 and At = 27r/200. Also the analytical- 
ly calculated loss term (see equation (4.3.2.4)) using the linearized set of equations (see 
Section 3.3) is indicated in the figure. 

For small values of B 0 there is perfect agreement between the numerical and 
analytical results because on the numerical grid no saturation occurs, resulting in a 
linear problem. The only loss term that contributes to the total loss is o-lE 2. The 
deviation which starts at B 0 = B 1 can be explained as follows: for B 0 > B 1 outer grid 
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cells saturate. The loss terms ~rtlE ~ and Ell rl]p then also contribute to the total loss term. 
When saturation occurs the reason for deviation between numerical and analytical result 
is twofold: 

(1) in general: the saturated shielding current is dissipative while in the analytical 
approximation the surface current is considered to be non-dissipative; 

(2) for this specific situation: at the surface the positively and negatively saturated 
shielding currents do not cancel but both positively and negatively saturated regions 
appear  next to each other,  as was already mentioned. This increases the loss even 
more. 

Notice that the first deviation between analytical and numerical results depends on the 
grid size Ar. When Ar decreases, saturation occurs at the outer grid cells for smaller 
values of B 0 so in the limit Ar---~0 saturation occurs for B0---~0. 

For  increasing amplitude B 0, the saturated regions penetrate more towards the centre 
of the wire. For B 0 = B 2 also a saturated region grows outward from the centre of the 
wire and the loss increases even more. The value of B e is 5 T which follows from 
equation (3.3.5). For very large values of B 0 the term ElL rlj p can be neglected compared 
to the Ohmic loss terms. The linear behaviour is dominant and the deviation between 
numerical and analytical results decreases. 

(B)  3-dimensional space-time grid 
An infinitely long circular wire in an AC perpendicular magnetic field. The solution of 
the Maxwell equations for this z-invariant problem has been determined with boundary 
conditions B A ( t ) =  0 and B~ and B r at r = R using the previously mentioned series 
expansion, Section (4.2.2.1). All three components of E and B and the superconducting 
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Fig. 4.12. 2~'/3/(~o~B~) as function of log(Bo). The numerical and analytical results are indicated. For further 
explanation see text. 
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cu r ren t  densi ty  Js mus t  be  calcula ted o n  a n  r - q~ - t grid. In  Fig. 4.13 the  degree  of  
saturation is shown for 4 moments in time for an AC transport current in phase with a 
s inusoidal  appl ied  field [5]. 

In this class of problems we consider a second one.  An infinitely long circular wire in 
a per iod ic  appl ied  magne t i c  field with per iodic i ty  length L~: 

(B A B A B A) = BA(t)(I , (pr)  sin pz, O, Io(pr ) cos pz) 

This problem is q~-invariant and periodic in z ,  resulting in an r - z - t grid. We use the 
Maxwel l  equat ions  with the boundary conditions: 

(1) B ~ ( z ,  r = O, t)  = O, 

(2) B~(z ,  r = R, t) = 0 (no applied current), 

T :  ~r/2 

s" . i 
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Fig. 4.13. The degree of s a t u r a t i o n  for  4 moments in time f or  an  A C  t r a n s p o r t  current in phase with a sinusoidal 
applied field [5]. 
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(3) E~(z ,  r = 0 ,  t) = 0 ,  
(4) B~(z ,  R )  and B~(z,  R )  are calculated using series expansions, see Section 4.2.2.2. 

(Notice that in the z-inv, problem (case 4.3.2A) we had B z ( R  ) = BA . )  

(5) atz---1L~: E ¢ = E ~ = B  = B z = j s = 0 ,  
(6) at z = O: O~E,p = O~E~ = a~B~ = O~B~ = O~j~ = 0 .  

So we have a grid for 0 <~ z <- ~ L z. Not all 7 unknowns have to be calculated because we 
can very easily eliminate Er and Br using: 

OzB¢ 
E r  ~-" - -  " - -  

tXo o L 

and 1~ r ~-OzE ~ resulting in the set: 

d zzB ~ + O ~Ez = t ~  , 
IXo o '±  

_10~rE~ = - B~ , 
r 

O z z E ~  - -  O r B  z : ~.LOj ~ , 

1 
- O r r B  ~ = tZoj ~ , 
r 

R 

R 

R 

0 I 
- L/4 0 L/4 

Fig .  4 .14 .  The development of the saturated regions for periodic B~ and linear time dependence. For further 
explanation see text. The current pattern is indicated. 
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-L/4. 0 L//. 

Fig. 4.15. Momentary solution of saturated regions for periodic B~ with sinusoidal time dependence. 
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plus constitutive equation (2.2.7) for the 5 unknowns B ,  Bz, E , ,  Ez and Js. This 
reduction from 7 to 5 unknowns is not considered in the first problem of this class 
because the elimination is not easy due to the ~0 dependence. Figure 4.14 shows the 
development of the saturated regions for BA(t)= at. The upper picture shows the 
boundary of the outside region for small t. The middle picture shows the start of the 
development of the inner saturated region at B A ~ iXorljcLp/47r [16] whereas the lower 
picture shows the final state of the saturated regions for t--* ~. In Fig. 4.15 a schematic 
picture is given for BA(t) = sin t at some time. As in the uniform case in the outer region 
saturation in both directions coexists. The minimal mesh size is about 20 x 10 grid points 
on the r - z surface given by 0 ~< r <~ R and 0 <~ z <~ Lz /4 .  Furthermore in one periodic 
cycle in time the solution is calculated in 20 time steps. 

The figures 4.10 and 4.15 as well as the analytical analysis of Section 3.3 and Fig. 4.14 
show that the z-invariant problem is a well defined limiting case of the problem periodic 
in z. The calculations show that superconducting twisted wires subjected to parallel 
magnetic fields can carry much less transport current than earlier reported in the 
literature [17]. 

5. Concluding remarks 

In this article a framework has been presented concerning analytical and numerical calcula- 
tions of the electromagnetic properties of composite superconducting wires. The basic 
analytical and numerical tools, applied to characteristic types of problems are presented. 
Furthermore a synopsis has been given of specific numerical calculations which enable the 
calculation of more complicated problems. As reported, numerical calculations sometimes 
show peculiar and unexpected effects. 

The numerical and analytical problems considered are idealized cases. Numerical calcula- 
tions of general cases are not performed due to large cpu times and high storage require- 
ments. However, the response of a system subjected to general applied magnetic fields is not 
necessarily a linear combination of the responses of idealized cases. To find bounds for the 
use of idealized solutions in general situations, some complicated problems should be 
considered in the future. 

A careful comparison of the analytical and numerical results for in essence the same 
setting can give a very good insight of what the different methods are capable of. Some 
comparisons are already given in this article but it will be worthwhile to make more 
comparisons in the future. 

All calculations are performed under isothermal conditions. Taking into account also the 
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heat balance equation with appropriate initial and boundary conditions, a more detailed 
description of the problem is obtained. 

6. List of symbols u = npr = 2nTrr/L z 
U = 27rnR/L z 
T = tempera ture  

B,  Br, Be,  B z = magnet ic  induction and its 
c~ = constant  of  functions of t 

components  only 
C, C A = constant  

= electric displacement [3 = 21r/Lp 
r/ = f rac t ion  of the supercon- 

E,  Er, E ,  E z = electric field and its compo- ductor 
nents  

I = t ransport  current  or, fr~, ~lr, %~,  tr~z' ~zz = components  of the conduc- 
tivity tensor  in the r, ± ,  11 

I0, 1~ = Bessel functions of the sec- 
ond kind and order 0 or  1 or  r, q~, z system 

~" = time constant  
K0, K1 = Bessel functions of the sec- 

ond kind and order 0 and ~b = twist angle, tg ~b = Or 

1 
J, Jr, J~, J~ = current  density and its corn- Subscripts: 

ponents  n, m = mode number  
Jo, Jz = Bessel functions of the first r, ~, z, t = components  in cylindrical 

kind of order 0 and 2 coordinate system and 

]~ = superconduct ing part  of  j~ time 
JII, J~, J,p = components  of  the surface x, y, z = components  in cartesian 

current  coordinates 

L = h a l f  the length of the 
sample Superscripts: 

L~ = period length of the applied A = applied 
field I = induced 

Lp = twist length of the wire 
M = magnetizat ion Operators: 
n = integer V. = divergence 
N I = number  of  filaments V × = curl 
P = 2zr/L~ = time derivative 
R = radius of  the wire ' = derivate w.r.t ,  the a rgument  
R I = f i l amen t  radius Im = t h e  imaginary part of  a 
R o = mean  radius of  the torus complex number .  
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